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ABSTRACT
Fuzzy Graphs are used for analyzing and modeling levels of information
in real-time systems (simple or complex networks).  A community
(network) is formed when human eProfiles (nodes) have links (edges)
and interactions with each other.  Considering multiple medium of
communications like email, chatting and short message service (SMS)
in the network, it will make the graph more complex (dense graph or
forest).  To address this issue in this paper analyzes those human
communities with the help of fuzzy graphs and highlights the status of
individuals in a human community.  Max-Min Composition (fuzzy
relation) was applied along with statistical analysis on fuzzy graphs of
human community.  Interaction Index (II) is used to estimate the intensity
of communication and Role Index (RI) determine the participation status
of individual in a human community.  All this analysis will be used in
our research and development of Community Algorithm, which will be
used as a tool that will help in identifying, analyzing, manipulating,
monitoring, and transforming human communities based on human
eProfiles.
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1. INTRODUCTION

Rosenfeld introduced Fuzzy Graphs [1] in 1975, which are used for
modeling real time systems, where the level of information varies with
different levels of precision.  Fuzzy Models are equally used in
Engineering and Sciences.  Fields like sociology, social psychology,
anthropology, linear algebra, (fuzzy) automata, group theory, graph
theory, and mathematics are used intensively in social network analysis
(SNA) [2] and emerged with formal models and methods.

SNA focus on relationships among actors (social entities) rather than
the attributes of individual actors.  Types and patterns of relationships
are emerged from that individual connectivity.  From mathematics, we
can have finite sets of actors and in this relations are usually
represented by matrices, which can be visualized as graphs.  This
research will use the capabilities of SNA and Fuzzy Graphs on human
communities.

Community Algorithm [7, 8, 9, 10, 11, 12, 13] is a variant of Genetic
Algorithm (GA) [6, 14, 15, 16, 17, 18, 19, 20] and will be another area on
which this research will focus and will help in formalizing the concept
of Human Community in Community Algorithm.

While studying graphs, which can be used in analyzing interactions
between human eProfiles in a community, many interesting types of
graphs were found. Random graphs and Fuzzy graphs have major
influence in Social Network Analysis. Fuzzy graphs [21] deal with
uncertain values of each connection. Some other graphs are Fuzzy
node fuzzy graph [22], crisp node fuzzy graph [22], Fuzzy Cognitive
Maps (FCM), [23] Fuzzy Weighted Graphs [24], Time-aggregated graph
(TAG) [25] and Spatio-Temporal Sensor Graph [26]. In this study, we
will be using Fuzzy Graphs in general.

The rest of the paper is organized as follows. The parameters of human
eProfiles were discussed in section 2 in detail, which are used to
generate human communities. In section 3, results based on analysis
of human communities by fuzzy and statistical operations were shown.
Finally, a conclusion is given in section 4.
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2. GENERATING HUMAN COMMUNITIES

In this section, we firstly describe the characteristics of human
eProfiles (which can be seen in Table 3 and Table 4). Secondly, the
human communities will be analyzed by fuzzy and statistical operations
in detail. In this research, fuzzy graph is considered for the analysis of
human communities which are created on the basis of number of
parameters of human eProfiles. We can define fuzzy graph as G = <V,
F>, where, V={vi} is the set of human eProfiles and F=(fij) is the value
of communication link between V. Email, chatting, and Short Message
Service (SMS) are the medium of communication considered in this
research and applied on human communities to observe interaction
level between individuals.  Earlier web communities [36, 37, 38] were
discussed in the research.

Fig. 1. A sample 10 nodes human community [Dark outlined nodes
are the start and end nodes]



4 PJETS Volume 4, No 1, 2014

Reading 

Books 

 

X X X X X X 

   

Listening 

Music 

 

X X X X X X 

   

Watching 

Films  X X X X X X 

   

Photograph 

Name X 

 

X X X 

     

# Emails 

Send X X X X 

 

X X 

   

# Emails 

Received X X X X 

 

X X 

   

# SMS 

Send X X X X X X X 

   

# SMS 

Received X X X X X X X 

   

Chat Dura-

tion X X X X X X X    

 

Table 3. Human eProfile parameters in different domains.
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Table 4. Human eProfile selected parameters. 
eProfile 

Parameters 

Prof ile  

Type 

Prof ile  Ontol-

ogy Selected 

GAHC 

Username Explicit 

Identification 

Profile    

 

Firstname Explicit 

Identification 

Profile  * 

 

Middlenam e Explicit 

Identification 

Profile  * 

 

Lastname Explicit 

Identification 

Profile  * 

 

Suffix Explicit 

Socio-Economic 

Profile    

 

Nick Name Explicit 

Socio-Economic 

Profile  * 

 

Gender Explicit 

Socio-Economic 

Profile  * 

 

Birthday Explicit 

Identification 

Profile  * 

 

Place of 

Birth Explicit 

Identification 

Profile  * 

 

Address Explicit 

Identification 

Profile  * 

 

C ity Explicit 

Identification 

Profile  * 

 

State  Explicit 

Identification 

Profile  * 

 

C ountry Explicit 

Identification 

Profile  * 

 
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ZIP  C o d e Exp li cit  

Iden ti fica tio n  

P ro file  *  

 

Em ail  Ad dre ss  Exp li cit  

Iden ti fica tio n  

P ro file  *  

 

A lte rn ate  Em a il 

A d d res s Exp li cit  

Iden ti fica tio n  

P ro file    

 

H o m e P h o ne Exp li cit  

Iden ti fica tio n  

P ro file  *  

 

M ob ile  Ph o ne  Exp li cit  

Iden ti fica tio n  

P ro file  *  

 

R el ig io n  Exp li cit  

S oci o -Eco n o m ic 

P ro file  *  

  

Lan g u a ge  

S p eak  Exp li cit  

S oci o -Eco n o m ic 

P ro file  *  

 

M ate  Exp li cit  

S oci o -Eco n o m ic 

P ro file    

 

F ath e r  Exp li cit  

Iden ti fica tio n  

P ro file  *  

 

M oth er Exp li cit  

Iden ti fica tio n  

P ro file  *  

 

S ib l in g  Exp li cit  

Iden ti fica tio n  

P ro file    

 

C h il dles s  Exp li cit  

S oci o -Eco n o m ic 

P ro file    

 

R el ati o n sh i p  

S tat u s Exp li cit  

S oci o -Eco n o m ic 

P ro file    

 

D eg ree N am e Exp li cit  

Iden ti fica tio n  

P ro file    

 

D is cip l in e Exp li cit  

Iden ti fica tio n  

P ro file  *  
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In st itu t ion  N am e  Ex plic it 

Ide n tif i cat io n 

P rofil e *  

 

Y ear o f P as si ng  Ex plic it 

Ide n tif i cat io n 

P rofil e *  

 

S tud y  T yp e Ex plic it 

Ide n tif i cat io n 

P rofil e *  

 

Ed u c ati on  Su m -

m a ry Ex plic it 

Ide n tif i cat io n 

P rofil e *  

 

C o m p a n y N am e Ex plic it 

So c io-E c o n o m ic  

P rofil e *  

 

J oini ng D at e Ex plic it 

So c io-E c o n o m ic  

P rofil e *  

 

W o rk  T yp e  Ex plic it 

So c io-E c o n o m ic  

P rofil e *  

 

D es ig nati on  Ex plic it 

So c io-E c o n o m ic  

P rofil e *  

  

In du st ry N am e Ex plic it 

So c io-E c o n o m ic  

P rofil e *  

 

O ccup at io n  H is -

to ry  Ex plic it 

So c io-E c o n o m ic  

P rofil e   

 

S m o k in g S ta tus  Ex plic it 

P refe ren ce P ro -

fil e   

 

P as si o n  Ex plic it 

P refe ren ce P ro -

fil e *  

 

P laying  S po rts  Ex plic it 

So c io-E c o n o m ic  

P rofil e *  

 

R ea ding  B oo k s Ex plic it 

So c io-E c o n o m ic  

P rofil e *  

 

Lis te ning  M u si c Ex plic it 

So c io-E c o n o m ic  

P rofil e   
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Watching Films Explicit 

Socio-Economic 

Profile   

 

Custom Tags Explicit 

Preference Pro-

file   

 

Photograph 

Name Explicit 

Socio-Economic 

Profile   

 

Number of 

Emails Send Implicit 

Transaction 

Profile * 

 

Number of 

Emails Re-

ceived Implicit 

Transaction 

Profile * 

 

Number of SMS 

Send Implicit 

Transaction 

Profile * 

 

Number of SMS 

Received Implicit 

Transaction 

Profile * 

 

Chat Duration Implicit 

Transaction 

Profile * 

 

 

In Table 4, there exists a pool of human eProfile parameters from which
we can extract communities.  Common features among human eProfiles
will link one human with other to form a human community [11].  The
parameters which were considered in this analysis are First Name,
Gender, Religion, City, Country and Designation. The resultant (sample)
human community of 10 nodes can be seen in Fig. 1.  In Computer
Science, only web communities [36, 37, 38] were discussed, which are
also known as FLG Community [36].
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Fig. 2. Parameters used for human profiling [9, 10]
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Fig. 3. GAHC [40] generated human communities with N=10, N=20,
N=25, N=30, N=40 and N=50 [Dark outlined nodes are the start and
end nodes of graph]

Fig. 2 shows human profiling [9, 10] i.e. how human beings are linked
with each other based on their characteristics, like birth place, living
place, caste, race, ethnic, gender, religion, education, habit, hobbies,
etc.  One human can be linked with other human on the basis of links
l1, l2, l3, and so on, which will help in forming human communities.  As
these links become complex as time passes, different roles will emerge.
These roles can be r1, r2, r3, and so on, which leads to role intensity,
played by same human being in different communities.
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Each community will hold individuals (Human eProfiles) as h1, h2, h3,
and so on in the Community Space, which is used in our ongoing
research of Community Algorithm [7, 8, 9, 10, 11, 12, 13].
We have developed two small projects, namely, LiveIT [39] and GAHC
[40].  LiveIT [39] gathers data for email, chatting, and Short Message
Service (SMS) from LAN users having human eProfiles, from a
genealogical perspective of a social network.  GAHC [40] is the
application which generates community graphs based on selected
parameters (First Name, Gender, Religion, City, Country and
Designation) from the human eProfiles.  Different human communities
were produced by GAHC tool [40] on the basis of religion in Fig. 3.
We have shown the complexity of the (community) graph by taking
different size of human community, i.e. number of nodes from 10 to 50.

3. ANALYSIS AND RESULTS

After generating Human Communities, we analyzed the interaction
frequency based on number of emails and SMS and chat session
hours among different humans living within a community.  Lets analyze
a human community from University Environment with N=10 (nodes)
and providing data for each users for different medium of
communication i.e. email (E), chat (C) and SMS (S).  Data for these
communications will be modeled through Fuzzy Graph Matrices.  We
analyzed and verified the results on the basis of Fuzzy and Statistical
Operations on the three Fuzzy Graph Matrices.
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4.1 Case 1 – Uniform Communication

We consider uniform communication (distribution of values) for Chat
(C) Matrix will have same values for user to user communication such
that every row total is equal to 1.  Similar matrices will be produced for
Email (E) and SMS (S) interactions for chat.

After applying Max-Min Composition [35] on these three
Fuzzy Graph Matrices of Email (E), Chat (C) and SMS (S) we get result
as S.E.C matrix (considering uniform distribution of values).  So it can
be unambiguously seen that all of the values in the resultant matrix
[Max-Min Composition Matrix] are same.  Therefore, all users have
same level of interaction and no distinction can be made among users
in this case.
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4.2. Case 2 – Full Communication

Similarly, we will have three matrices when we consider 100% (full)
communication on each channel (user-user communication) in every
medium of communication i.e. Email (E), Chat (C) and SMS (S).

After applying Max-Min Composition [35] on these three Fuzzy
Graph Matrices of Email (E), Chat (C) and SMS (S), we get result as S.E.C
matrix (considering 100% communication).  Again it can be seen that all of
the values in the resultant matrix [Max-Min Composition Matrix] are same
and are at 100%.  Therefore all users have same level of interaction and no
distinction can be made among users in this case either.

4.3. Case 3 – University LAN Environment

Now considering the three Fuzzy Graph Matrices for each of the
medium of communication i.e. email (E), chat (C) and SMS (S) for analyzing
human interaction in a university community.  The values in the matrices
are taken from some arbitrary communication of 10 users in a LAN
environment of a University.
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  0.00 0.02 0.03 0.03 0.05 0.14 0.02 0.11 0.05 0.55 

 0.17 0.00 0.17 0.00 0.02 0.01 0.05 0.14 0.44 0.00 

 0.00 0.06 0.00 0.05 0.06 0.07 0.13 0.33 0.04 0.25 

 0.01 0.04 0.09 0.00 0.07 0.69 0.09 0.00 0.01 0.01 

S 

= 0.01 0.16 0.00 0.00 0.00 0.06 0.17 0.53 0.00 0.06 

 0.05 0.30 0.02 0.05 0.04 0.00 0.06 0.07 0.11 0.30 

 0.15 0.05 0.01 0.07 0.27 0.00 0.00 0.05 0.27 0.14 

 0.17 0.10 0.02 0.03 0.05 0.01 0.05 0.00 0.51 0.07 

 0.00 0.06 0.06 0.06 0.61 0.00 0.19 0.02 0.00 0.00 

 0.02 0.53 0.17 0.14 0.07 0.02 0.00 0.03 0.03 0.00 

 

 0.00 0.15 0.02 0.11 0.06 0.58 0.07 0.00 0.01 0.00 

 0.05 0.00 0.05 0.14 0.44 0.00 0.05 0.06 0.07 0.13 

 0.06 0.02 0.00 0.14 0.02 0.10 0.05 0.54 0.07 0.00 

 0.31 0.18 0.04 0.00 0.02 0.01 0.04 0.10 0.31 0.00 

E 

= 0.00 0.12 0.13 0.12 0.00 0.05 0.06 0.07 0.12 0.32 

 0.01 0.32 0.10 0.08 0.04 0.00 0.01 0.06 0.03 0.34 

 0.11 0.28 0.00 0.07 0.00 0.23 0.00 0.28 0.00 0.04 

 0.08 0.00 0.05 0.26 0.02 0.45 0.07 0.00 0.01 0.05 

 0.14 0.02 0.07 0.14 0.01 0.00 0.08 0.38 0.00 0.15 

 0.15 0.00 0.03 0.58 0.02 0.02 0.06 0.02 0.11 0.00 

 



  15PJETS Volume 4, No 1, 2014

 0.00 0.12 0.06 0.63 0.08 0.00 0.01 0.01 0.03 0.07 

 0.12 0.00 0.15 0.45 0.06 0.02 0.03 0.04 0.12 0.05 

 0.06 0.15 0.00 0.14 0.04 0.42 0.05 0.02 0.04 0.11 

 0.63 0.45 0.14 0.00 0.01 0.04 0.07 0.20 0.21 0.01 

C 

= 0.08 0.06 0.04 0.01 0.00 0.05 0.09 0.23 0.09 0.18 

 0.00 0.02 0.42 0.04 0.05 0.00 0.06 0.02 0.08 0.03 

 0.01 0.03 0.05 0.07 0.09 0.06 0.00 0.08 0.22 0.10 

 0.01 0.04 0.02 0.20 0.23 0.02 0.08 0.00 0.10 0.05 

 0.03 0.12 0.04 0.21 0.09 0.08 0.22 0.10 0.00 0.17 

 0.07 0.05 0.11 0.01 0.18 0.03 0.10 0.05 0.17 0.00 

 

In each of the fuzzy graph matrices, the values marked in bold are
the maximum level of interaction between the users (i, j), where i is the
row number and j is the column number.  In other words, it is the level of
communication between useri and userj.  When Max-Min Composition
[34] is applied, we will have 6 matrices in result.  Following equation (3)
shows the average of all of them and we get AMM (Average Max-Min):

AMMij =   (C.E.S)ij + (S.E.C)ij + (E.S.C)ij + (S.C.E)ij + (C.S.E)ij + (E.C.S)ij     (3)

 6
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Table 5. Summery of results of Max-Min Composition [35] on
fuzzy graph matrices.

Table 5 summarizes the results of Max-Min Composition [35] for 6
different combinations. Values in bold are the maximum ones and
values in italic and underline are the minimum ones for each matrix.
When Weighted Average is applied on the same fuzzy graph matrices,
for each of the medium of communication i.e. email (E), chat (C) and
SMS (S) for analyzing human interaction in a university community
resulting in 6 combination matrices.  The average of Weighted Average
(AWA) can be seen in the following equation (4):

AWAij =  (C.2E.3S)ij +(S.2E.3C)ij +(E.2S.3C)ij +(S.2C.3E)ij +(C.2S.3E)ij +(E.2C.3S)ij

 6
(4)

Users C.S.E C.E.S E.C.S S.C.E S.E.C E.S.C AMM 

1 1.49 1.82 1.48 1.24 2.17 1.61 1.63 

2 1.59 1.85 1.58 1.78 1.42 1.45 1.61 

3 1.65 1.85 1.52 1.50 1.84 1.35 1.62 

4 2.10 2.15 1.79 1.27 1.42 1.69 1.74 

5 1.47 1.43 1.45 1.52 2.02 1.57 1.58 

6 1.39 1.34 1.55 1.72 1.83 1.74 1.60 

7 1.44 1.41 1.57 1.80 1.54 1.65 1.57 

8 1.59 1.76 1.91 1.67 1.44 1.57 1.66 

9 1.60 1.80 1.56 1.39 1.48 1.60 1.57 

10 1.45 1.48 2.24 1.73 1.53 1.40 1.64 
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Table 6. Summery of results of weighted average operation on
fuzzy graph matrices.

Users C.2S.3E C.2E.3S E.2C.3S S.2C.3E S.2E.3C E.2S.3C AWA 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.01 1.01 1.01 1.01 1.02 1.02 1.01 

3 1.00 1.00 1.01 1.01 1.01 1.01 1.01 

4 1.13 1.13 1.25 1.25 1.38 1.38 1.25 

5 0.97 0.97 0.94 0.94 0.91 0.91 0.94 

6 0.95 0.95 0.91 0.91 0.86 0.86 0.91 

7 0.95 0.95 0.90 0.90 0.85 0.85 0.90 

8 0.96 0.96 0.92 0.92 0.88 0.88 0.92 

9 1.01 1.01 1.02 1.02 1.03 1.03 1.02 

10 0.96 0.96 0.92 0.92 0.88 0.88 0.92 

 
Table 6 summarizes the results of Weighted Average. Values in

bold are the maximum ones and values in italic and underline are the
minimum ones.

Similarly, we will have different results after applying different
statistical operations on the same fuzzy graph matrices, for each of
the medium of communication i.e. email (E), chat (C) and SMS (S) for
analyzing human interaction in a university community.  Following are
the different equations from (5) to (9) for Average (AVG), Biased
Weighted Averages for SMS (WAVS), Email (WAVE), and Chat (WAVC)
and Average of all Biased Weighted Averages (WAVG) on the same
fuzzy graph matrices, for each of the medium of communication i.e.
email (E), chat (C) and SMS (S):

AVGij =    Eij + Sij + Cij

WAVEij =    3 * Eij + Sij + Cij

WAVSij =    Eij + 3 * Sij + Cij

              3

                5

                5

 (5)

 (6)

 (7)
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WAVCij =    Eij + Sij + 3 * Cij

WAVGij =    WAVEij + WAVSij + WAVCij

(8)

(9)

 3

  5

Table 7. Summary of all results of matrix operations on fuzzy
graph matrices.

Users AVG WAVE WAVS WAVC WAVG AMM AWA 

1 1.00 1.00 1.00 1.00 1.00 1.63 1.00 

2 1.01 1.01 1.01 1.02 1.01 1.61 1.01 

3 1.01 1.00 1.01 1.02 1.01 1.62 1.01 

4 1.25 1.15 1.15 1.45 1.25 1.74 1.25 

5 0.94 0.97 0.97 0.90 0.94 1.58 0.94 

6 0.91 0.95 0.95 0.84 0.91 1.60 0.91 

7 0.90 0.94 0.94 0.82 0.90 1.57 0.90 

8 0.92 0.95 0.95 0.86 0.92 1.66 0.92 

9 1.02 1.01 1.01 1.04 1.02 1.57 1.02 

10 0.92 0.95 0.95 0.85 0.92 1.64 0.92 

 
The summery of all of the operations defined in equations from (5)

to (9) applied on the three fuzzy graph matrices can be seen in Table 7.
Values in bold are the maximum ones and values in italic and underline
are the minimum ones.  Therefore, it can be concluded statistically that
eProfile 4 has the maximum level of communication in almost every medium
of interaction and eProfile 7 has the minimum level of communication in
every medium of interaction.  This will lead us to define Indices for
Interaction and Role.

Table 8 shows the summary results of the Matrix operations after
applying Role Index and Interaction Index.  User 4 has the most active
role in the human community.  Similarly, user 7 has the passive role and all
other users have active role in the human community
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Table 8. Applying Interaction Index and Role Index on the summary
results.

Users AVG WAVE WAVS WAVC WAVG AMM AWA RI 

1 M M M M M M M A 

2 M M M M M M M A 

3 M M M M M M M A 

4 H H H H H H H MA 

5 M M M M M M M A 

6 M M M M M M M A 

7 L L L L L L L P 

8 M M M M M M M A 

9 M M M M M L M A 

10 M M M M M M M A 

 

5. CONCLUSION AND FUTURE WORK

In this paper, Human Communities were analyzed successfully by
using Fuzzy Graphs on the basis of human eProfile parameters.  Interaction
Index and Role Index emerged as two indices, which can classify or grade
users, based on their interaction (in terms of Email, Chat and SMS) with
other members of the human community [11].  Max-Min Composition [35]
in Fuzzy Relation helps us in initiating the idea of combining three different
medium of communication (i.e. Email, Chat and SMS) in one operation.
All other statistical operations also upheld similar results and
supplementing the analysis done in the desired direction.  This analysis
will lead us towards generating an algorithm which can help us in analysis
of Human Communities and strengthen the ongoing research for
Community Algorithm [7, 8, 9, 10, 11, 12, 13].
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